Exponential parametric distortion nonlinear measurement errors Models
نویسندگان
چکیده
منابع مشابه
Nonlinear Models of Measurement Errors
Measure errors in economic data are pervasive and nontrivial in size. The presence of measurement errors causes biased and inconsistent parameter estimates and leads to erroneous conclusions to various degrees in economic analysis. The importance of measurement errors in analyzing the empirical implications of economic theories is highlighted in Milton Friedman’s seminal book on the consumption...
متن کاملPartial linear single index models with distortion measurement errors
We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different fro...
متن کاملBayesian inference of exponential random graph models under measurement errors
While the impact of measurement errors inherent in network data has been widely recognized, relatively little work has been done to solve the problem mainly due to the complex dependence nature of network data. In this paper, we propose a Bayesian inference framework for summary statistics of the true underlying network, based on the network observed with measurement errors. To the best of our ...
متن کاملParametric Measurement Error Models
We describe a simulation-based method of inference for parametric measurement error models in which the measurement error variance is known or at least well estimated. The method entails adding additional measurement error in known increments to the data, computing estimates from the contaminated data, establishing a trend between these estimates and the variance of the added errors, and extrap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics
سال: 2022
ISSN: ['1532-415X', '0361-0926']
DOI: https://doi.org/10.1080/03610926.2022.2111526